Could following the Mediterranean diet prevent blindness?

The evidence is in and it shows that a poor diet plays a big role in the development of age-related macular degeneration (AMD), a leading cause of blindness in the US.  A large collaboration of researchers from the EU investigated the connection between genes and lifestyle on the development of AMD has found that people who followed a Mediterranean diet cut their risk of late-stage AMD by 41% This research expanded on previous studies and suggests that such a diet is beneficial for everyone, whether you already have the disease or are at risk of developing it.

A Mediterranean diet emphasizes eating less meat and more fish, vegetables, fruits, legumes, unrefined grains, and olive oil. Previous research had linked it to a longer lifespan and a reduced incidence of heart disease and cognitive decline. Previous studies also showed following this diet can help with certain types of AMD, but only focused on different stages of the disease.

By combining this earlier research on AMD with the latest data, a clear picture emerges: Diet has the potential to prevent a blinding disease.

AMD is a degenerative eye disease. It causes loss of central vision, which is crucial for simple everyday activities, such as the ability to see faces, drive, read, and write. It’s a leading cause of vision loss among people age 50 and older, affecting 1.8 million Americans. By 2020, that number is expected to climb to nearly 3 million.

In this study, researchers analyzed food-frequency questionnaires from nearly 5,000 people who participated in two previous investigations — the Rotterdam Study, which evaluated disease risk in people age 55 and older, and the Alienor Study, which assessed the association between eye diseases and nutritional factors in people aged 73 and older. Patients in the Rotterdam study were examined and completed food questionnaires every five years over a 21-year period, while patients in the Alienor Study were seen every two years over a 4-year period. The researchers found that those who closely followed the diet were 41%  less likely to develop AMD compared with those who did not follow the diet.

They also found that none of the individual components of a Mediterranean diet on their own — fish, fruit, vegetables, etc. — lowered the risk of AMD. Rather, it was the entire pattern of eating a nutrient-rich diet that significantly reduced the risk of late AMD.

There are two kinds of AMD — dry and wet. The dry type affects about 80 to 90 percent of people with AMD. In dry AMD, small white or yellowish deposits, called drusen, form on the retina, causing it to deteriorate over time. In the wet form, blood vessels grow under the retina and leak. While there is an effective treatment available for the wet type, there is no treatment available for dry AMD.

So remember you are what you eat!

To read the original article in its entirety, click here. https://www.sciencedaily.com/releases/2018/10/181001101940.htm

Biomarkers could aid in early detection of glaucoma

Researchers bred mice in which the gene PTP-Meg2 (protein tyrosine phosphatase megakaryocyte 2) was mutated. As a result, the animals suffered from chronic intraocular pressure elevation. The research team successfully demonstrated that, in their model, the intraocular pressure elevation was associated with a loss of optic nerve fibers and retinal cells. They also observed that retinal cells were unable to function properly. They further discovered glial cells and certain components of the immune system showed a reaction in the animals’ optic nerve and retina. As both aspects may be relevant for neurodegeneration, specific and early intervention into these cellular mechanisms could inhibit glaucoma.

By making use of a genetic screening, the researchers identified new potential biomarkers for glaucoma, which in the future, may facilitate early detection. As a result, it will be possible to start therapy at an earlier stage, before the optic nerve and retina are damaged. The glaucoma-mouse model may, moreover, be used to test new therapy options. So far intraocular pressure was reduced and nerve cells were retained in the mice if they were given a drug that has been used to treat human patients.

With more than 60 million patients, Glaucoma is a leading cause of blindness worldwide. In Germany alone, there are one million patients — and the estimated number of unknown cases is likely to be much higher, due to the fact that symptoms often remain undetected during the early stage of the disease. In glaucoma patients, the optic nerve and the retinal nerve cells are damaged beyond repair.

To read the original article in its entirety, click here. https://www.sciencedaily.com/releases/2018/10/181025103308.htm

Wearable Computer Gloves ‘Teach Braille’ Passively

More than 39 million people around the world are blind. But for about 10% of these individuals, Braille – a reading and writing system that utilizes a series of raised dots that represent letters, numbers and punctuation – is a valuable tool. Braille is something lacking in most school systems, and is difficult to learn as we grow older when the majority of blindness occurs. So could this new wearable glove be the solution to teaching Braille to the larger vision –impaired population?

Researchers from the Georgia Institute of Technology have developed a wearable computer glove that can teach braille, even when the user’s attention is on another activity. The research team – including Thad Starner, a professor at Georgia Tech and a technical/lead manager on Google’s Project Glass – first created a technology-enhanced glove back in 2008, called Piano Touch. The glove could teach individuals how to play piano melodies in 45 minutes.

Their latest creation is an improvement on Piano Touch, which has been built around a process called passive haptic learning (PHL) – the idea that people can learn a skill unconsciously without devoting full attention to what they are learning.

For their study, participants were required to wear the gloves during a series of tasks. The gloves consist of small vibrating motors that are stitched into the knuckles.

Computer Gloves

Image credit: Georgia Tech.

In the first task, the motors in the glove vibrated in a sequence that mimicked a typing pattern of a premeditated phrase in Braille. The participants were given audio cues that let them know what Braille letters were produced through typing the sequence.

Each participant was then required to type the phrase once on a keyboard without any vibrations or audio cues while the researchers measured their accuracy.

In the next task, participants played a computer game for 30 minutes – as a distraction – while wearing the glove. Half of the participants were presented with repeated vibrations and audio cues that represented the same Braille phrase as the previous task, while the remaining participants acted as a control group and were only given audio cues.

The subjects had no previous knowledge of Braille and the tasks did not include visual feedback, meaning participants were unaware of their accuracy. On comparing the participants’ results with those of the first task, the team found that those in the control group had about the same level of accuracy.

However, those who had repeated vibrations and audio cues in the second task were 30% more accurate, with some even gaining 100% accuracy. Furthermore, the researchers found that these participants were then able to effectively go from writing Braille to reading it.

“After the typing test, passive learners were able to read and recognize more than 70% of the phrase’s letters,” says study co-author Caitlyn Seim, a student at Georgia Tech.

Seim is now in the process of conducting another study, which involves using the glove to teach the full Braille alphabet to participants. She says that so far, 75% of subjects have demonstrated perfect typing accuracy. In addition, participants were able to recognize and read more than 90% of Braille letters after 4 hours of learning.

To read the original article, please click here:

http://www.medicalnewstoday.com/articles/278719.php

 

Vision-Correcting Displays Makes Reading Glasses Like So Yesterday!

What if computer screens corrected to your specific vision? It may happen sooner than you think!

The researchers at University California -Berkley are developing computer algorithms that compensate for an individual’s visual impairment, creating vision-correcting displays that enable users to see text and images clearly without wearing eyeglasses or contact lenses. This technology could potentially help hundreds of millions of people who currently need corrective lenses to use their smart phones, tablets and computers. One group who would benefit greatly, for example, are those afflicted with presbyopia, a type of farsightedness in which the ability to focus on nearby objects is gradually diminished as the aging eyes’ lenses lose elasticity. You all know who I am talking about…. The people with the Walgreen’s reading glasses that they need to read a text, a phone number, an email, etc.

Vision-Correcting Display

Perhaps more importantly, the displays could one day aid people with more complex visual problems, known as high order aberrations, which cannot be corrected by eyeglasses, said Brian Barsky, UC Berkeley professor of computer science and vision science, and affiliate professor of optometry.

“We now live in a world where displays are ubiquitous, and being able to interact with displays is taken for granted,” said Barsky, who is leading this project. “People with higher order aberrations often have irregularities in the shape of the cornea, and this irregular shape makes it very difficult to have a contact lens that will fit. In some cases, this can be a barrier to holding certain jobs because many workers need to look at a screen as part of their work. This research could transform their lives, and I am passionate about that potential.”

This latest approach improves upon earlier versions of vision-correcting displays that resulted in low-contrast images. The new display combines light field display optics with novel algorithms.

Huang, now a software engineer at Microsoft Corp. in Seattle, noted that the research prototype could easily be developed into a thin screen protector, and that continued improvements in eye-tracking technology would make it easier for the displays to adapt to the position of the user’s head position.

“In the future, we also hope to extend this application to multi-way correction on a shared display, so users with different visual problems can view the same screen and see a sharp image,” said Huang.

As more and more applications are being found for IPAD’s and Smart Phones are becoming much more common place, this is indeed a timely advancement.

The National Science Foundation helped support this work.

Video: http://www.youtube.com/watch?v=6V2x3nLQdA0

To read the original article, please click here:  http://www.sciencedaily.com/releases/2014/07/140729152921.htm

This Just In

New Layer In Human Eye Discovered

I just read an article dated June 16, 2013 about a new layer of the Human eye being discovered.  This is great news for those people who need to have corneal graft or transplant.

The new layer, located in the front layer of the eye, is being called the “Dua Layer”, so named after the researcher (Professor Harminder Dua) who led the study in which the discovery was made. Dua explained the significance of the discovery in this way:

Having identified this new and distinct layer deep in the tissue of the cornea, we can now exploit its presence to make operations much safer and simpler for patients.”

He went on to add:

“From a clinical perspective, there are many diseases that affect the back of the cornea, which clinicians across the world are already beginning to relate to the presence, absence, or tear in this layer.”

With over 65,000 penetrating corneal graft procedures being carried out worldwide each year, surgeons will benefit considerably by understanding more about the new Dua’s layer, which will improve outcomes for patients undergoing corneal grafts and transplants.

This discovery will alter the way these surgeries are preformed and therefore chances of tearing during surgery will be significantly reduced.

On a side note, this discovery means that ophthalmology and anatomy textbooks will literally have to be re-written. Not a bad price to pay for the advancements this discovery will yield.

Click here to read the original article: New Layer in the Human Eye Discovered